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Transport of particles caused by correlation between additive and multiplicative noise
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The transport of a spatially periodic system driven by additive and multiplicative Gaussian white noises
~between which there is a correlation! is investigated in the presence of spatial symmetry. The probability
current shows that the correlation between additive and multiplicative noise is an ingredient for the flux of
particles. Using the formulas obtained by us we investigate the transport in the superconducting junction and
the transport of motor proteins in the case of environmental perturbation. For the motor proteins we find that
the multiplicative noise can also induce the flux of the moleculae, even if the correlation between additive and
multiplicative noise is zero. The results of superconducting junction and motor proteins provide a theoretical
foundation for further study.@S1063-651X~98!07104-9#

PACS number~s!: 05.40.1j, 74.40.1k, 82.20.Mj, 87.15.Rn
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I. INTRODUCTION

Recently a considerable amount of analysis has been
voted to investigating transport of particles in spatially pe
odic stochastic systems@1#. The hopeful observation is tha
nonequilibrium fluctuations can lead to transport in spatia
periodic but asymmetric systems@2–8#. It has also been
shown that mean-zero noise of a more complicated as
metric type can lead to similar phenomena even in the
sence of a spatial asymmetry@9–13#. It is clear that the spa
tial asymmetry and the noise asymmetry are ingredients
transport. In Refs.@2,13,14#, it is reported that the time cor
relation of noise is also an ingredient for transport.

Now preliminary attempts have been made to apply th
phenomena to the operation of biomolecular motors@6,15#,
as applications of new molecular separation techniques@16#,
to condensed matter type systems@17,18#, and to understand
ing the kinetics of single ion channels@19#. Potential ratch-
ets, fluctuating potential ratchets, and fluctuating force ra
ets in the asymmetric case have been investiga
@2,6,20,21#. A rocked thermal ratchet driven by a zero-me
time-periodical external force was considered in Re
@22,23#. The transport in symmetric periodic potential sy
tems driven by Poisson white noise~shot white noise! or
asymmetric dichotomous noise has been demonstr
@13,24,25#.

All of the above work has been focused on the transp
of particles in the spatially asymmetric case or the no
asymmetric case. In this paper we shall investigate the tr
port in a spatially periodic symmetric system with symmet
additive and multiplicative noise. The main point is that t
correlation between additive and multiplicative noise c
cause net flow even in the absence of spatial asymmetry.
setup for the problem is as follows: We first study a gene
system consisting of overdamped Brownian particles wh
differential equation is driven by Gaussian white noise,
tween which there is a correlation. Then using the formu
obtained by us we try to investigate the transport in sup
conducting~Josephson! junction and the transport of moto
proteins with environmental perturbation.
571063-651X/98/57~4!/3917~6!/$15.00
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II. THE OVERDAMPED BROWNIAN PARTICLES

The equation of the overdamped Brownian particles
the system is

ẋ5 f ~x!1g~x!j~ t !1h~ t !, f ~x!52
dU0~x!

dx
,

g~x!52
dU1~x!

dx
, ~1!

whereU0(x) andU1(x) are spatially periodic functions with
a periodL. j(t) ~the multiplicative noise! andh(t) ~the ad-
ditive noise! represent the Gaussian white noises. In gene
we express the influence of the internal fluctuation on
system as additive noise and the effect of the external e
ronmental fluctuation on the system as multiplicative noi
Here we assume that the external environmental fluctua
can influence the internal fluctuation. Because of the in
ence of the external environmental fluctuation on the inter
fluctuation, additive and multiplicative noise are not ind
pendent~there is correlation between them!. The statistical
properties of j(t) and h(t) are ^j(t)& f5^h(t)& f50,
^h(t)h(t8)& f52D1d(t2t8), ^j(t)j(t8)& f52D2d(t2t8),
and ^j(t)h(t8)& f52lAD1D2d(t2t8) @(0<l<1), ^& f de-
notes averaging over the noise#. The Stratonovich interpreta
tion of Eq. ~1! yields the Fokker-Planck equation@26,27#

] tP~x,t !52]xJ~x,t !, ~2!

with the probability currentJ(x,t) given by

J~x,t !5A~x!P~x,t !2]xB~x!P~x,t !, ~3!

where A(x)5 f (x)1D2g8(x)@g(x)1lAD1 /D2#, and B(x)
5D1(12l2)1D2@g(x)1lAD1 /D2#2. The prime indicates
derivative with respect tox of the functiong(x).

In the stationary state, fort→`, the distributionP(x,t)
→P(x) and the currentJ(x,t)→J5const. Then we have

J5A~x!P~x!2]xB~x!P~x!. ~4!
3917 © 1998 The American Physical Society
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3918 57J. H. LI AND Z. Q. HUANG
However,J is not arbitrary, but is determined by normaliz
tion and periodic boundary conditions (b2a5L) P(a)
5P(b), J(a)5J(b)5J. For convenience, definef(x)
5*a

x@A(x8)/B(x8)#dx8. Then dividing the sides of Eq.~4!
by ef(x) and noting]xB(x)P(x)/ef(x)5]xB(x)P(x)/ef(x)

1 B(x)P(x)/ef(x)]xf(x), we obtain

J

ef~x!
5

A~x!P~x!

ef~x!
2]x

B~x!P~x!

ef~x!
2

B~x!P~x!

ef~x!
]xf~x!.

~5!

Substituting]xf(x)5A(x)/B(x) into Eq. ~5!, we have

J

ef~x!
52]x

B~x!P~x!

ef~x!
. ~6!

Integrating Eq.~6! from a to b, we get

J5
B~a!P~a!exp@2f~a!#2B~b!P~b!exp@2f~b!#

E
a

b

exp@2f~x!#dx

.

~7!

It is clear thatP(a)5P(b), B(a)5B(b), andf(a)50, so
Eq. ~7! becomes

J5
B~a!P~a!$12exp@2f~b!#%

E
a

b

exp@2f~x!#dx

5N$12exp@2f~b!#%,

~8!

where N5P(a)B(a)/*a
bdx exp@2f(x)#, which is the nor-

malization constant for the stationary probability distributi
@cf. Eq. ~11!#.

From Eq. ~8! we find that the solution for the nonzer
currentJ has a definite sign. This is because of the symme
breaking, which is induced by the correlation between
additive and multiplicative noises. It is necessary to g
insight into the origin of this. Consider a solutionx(t) ~pro-
vided that it corresponds to the currentJ) of Eq. ~1! for a
given realization of the noises. Then2x(t) is also a solution
of Eq. ~1!, with t replaced by2t. If h(t) and j(t) were
uncorrelated, the solution2x(t) would have the same prob
ability asx(t); the corresponding current is2J ~as a matter
of fact, now the currents6J are zero!. But when there is a
correlation, the probability does not have this symmetry;
current is also so. In a sense then the phenomenon rep
here is due to symmetry breaking, which is induced by
correlation between additive and multiplicative noise. In a
dition, from Eq.~8! we can still find that whenf(b).0, J is
positive; while whenf(b),0, J is negative. Thus the con
dition under whichJ changes sign is that the value off(t)
can vary from positive to negative~or from negative to posi-
tive!.

It needs to be explained that the zero-current general
lution of Eq. ~4! is not admissible to the system. Indee
J50 and its corresponding solution of Eq.~4! P0(x)
}1/B(x)exp$*x@A(x8)/B(x8)#dx8% satisfy the conditions of the
periodicity, the periodic boundary condition, and so on. B
if J50, from Eq.~6! we can getef(b)51, i.e.,f(b)50, and
f(b)50 is not a general condition of the system studied
us. Thus the zero-current general solution of Eq.~4! is not
admissible.
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We now turn to a more detailed analysis of Eq.~8!.
Firstly, let us consider Eq.~1!. In general, the random func
tion h(t) describes internal thermal noise~additive!, and
j(t) describes external ‘‘nonthermal’’ noise~multiplicative!.
When g(x)50 or j(t)50 no transport can occur (J50).
Transport occurring withg(x)50 or j(t)50 means that
thermal fluctuations are converted into work and implies
violation of the second law of thermodynamics. Equation~8!
shows that the condition for the transport of particles
f(b)Þ0, i.e.,

E
a

bA~x!

B~x!
dx5E

a

b f ~x!1D2g8~x!@g~x!1lAD1 /D2#

D1~12l2!1D2@g~x!1lAD1 /D2#2
Þ0.

~9!

The formula~9! can be further simplified as

E
a

b f ~x!

D1~12l2!1D2@g~x!1lAD1 /D2#2
Þ0. ~10!

In the presence of spatial symmetry, suitably selectinga and
b we haveU0(a1b2x)5U0(x) andU1(a1b2x)5U1(x)
@i.e., f (a1b2x)52 f (x) and g(a1b2x)52g(x)]. If
l50, the left-hand side of Eq.~10! equals zero, which can
be easily obtained after usingf (a1b2x)52 f (x) and
g(a1b2x)52g(x), now Eq.~10! is false and the currentJ
equals zero; iflÞ0, Eq. ~10! is true and the currentJ does
not equal zero. In the case of spatial asymmetry, eve
l50, Eq.~10! is true and the currentJ does not equal zero
Thus the correlation between additive and multiplicati
noise and the spatial asymmetry are ingredients for the
of particles in the spatially periodic system. It has been
ported in many references that the spatial asymmetry
induce transport of particles in a spatially periodic syste
Here our main point is that the correlation between addit
and multiplicative noise can cause net flow even in the
sence of spatial asymmetry. In addition, it is clear that wh
the overdamped Brownian particle is subject to an exter
constant force, the spatial symmetry will be broken and
particle can exhibit a nonzero net drift speed. If the exter
force is related to timet, as long as symmetry~spatial sym-
metry or noise symmetry! is broken the particle will also
have a nonzero net speed.

The stationary solution of Eq.~2! is

P~x!5N
exp@f~x!#

B~x!
R exp@2f~x8!2f~b!u~x2x8!#dx8,

~11!

whereu(x2x8) is the Heaviside step function, and the no
malization constantN5P(a)B(a)/*a

bdx exp@2f(x)#. The
average velocity

^ẋ&5Š^ẋ~x,t !& f‹x5Š^ f ~x!1g~x!j~ t !& f‹x . ~12!

According to the Novikov theorem@28#, we have~see Ap-
pendix!

^g~x!j~ t !& f5D2@g~x!1lAD1 /D2#g8~x!. ~13!
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From Eqs.~12! and~13! we can obtain the stationary avera
velocity

^ẋ&s5 lim
t→`

1

t E0

t

Š^ẋ~x,t!& f‹xdt5 R A~x!P~x!dx

5J$12exp@2f~b!#%21M , ~14!

where M5rrdxdx8@A(x)/B(x)]exp@f(x)2f(x8)
2f(b)u(x2x8)]. Below we shall investigate the motion o
electron pairs in a superconducting junction and the mo
of motor proteins along a biopolymer in a the case of en
ronmental perturbation.

III. THE JOSEPHSON JUNCTION

For the superconducting junction, the electric curre
across the junction is given byJc5J0 sinf, wheref is the
phase difference of the superconducting order param
across the junction andJ0 is a critical electric current. The
evolution of the phase difference is described by the equa
@29#

\

2eR
ḟ1J0 sin f5I ~ t !, ~15!

whereI (t) is a driving electric current, andR is a resistance
In the case of the environmental perturbation, such as
external vibration, the change of the external temperat
the perturbation of the external electromagnetic field, and
on, the internal structure of the Josephson junction sho
change. In general, the change is very small. But when
environmental perturbation becomes larger and larger,
change will become clearer and clearer. The change of
internal structure of the Josephson junction should vary
critical electric current. Now we describe it via a stochas
parameter,J01sj0(t), in which j0(t) is a stochastic force
s is a positive parameter. The driving electric curre
I (t)5h0(t) is taken as a Gaussian white noise. Then
~15! becomes

\

2eR
ḟ1@J01sj0~ t !#sin f5h0~ t !, ~16!

where we approximately setj0(t) as a Gaussian white noise
The statistical properties ofj0(t) and h0(t) are
^j0(t)& f5^h0(t)& f50, ^h0(t)h0(t8)& f52D1d(t2t8), and
^j0(t)j0(t8)& f52D2d(t2t8). h0(t) is the internal therma
additive noise, andj0(t) the external multiplicative noise
Equation~16! can be simplified as

ḟ52v0 sin f2j~ t !sin f1h~ t !, ~17!

in which v052eRJ0 /\, j(t)5(2esR/\)j0(t), and
h(t)5(2eR/\)h0(t).

From the above analysis for the origin of the multiplic
tive noise, we find that here the multiplicative noise rep
sents the external environmental perturbation. In addit
the change of the internal structure of the Josephson ju
tion, which is caused by the environmental perturbati
makes the thermal vibration of the moleculae in the junct
vary. The varying~it is a fluctuation! of the thermal vibration
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of the moleculae should affect the thermal additive noi
Thus here the additive and multiplicative noises are not
dependent, and there is correlation between them. Here
assume that the correlation function betweenj0(t) andh0(t)
is ^h0(t)j0(t)&52lAD1D2d(t2t8) (0<l<1). For conve-
nience, we make Eq.~17! in the dimensionless form and se
\/2e5J05s5R51.

In Fig. 1 we plot the negativeJ/2 (J is the probability
current! versus the additive noise strengthD1 for different
values ofl. Since we have made Eq.~17! in dimensionless
form, J, D1, D2, v0 , and l ~in Fig. 1! are dimensionless
Here we setD250.3, v051, andl50.3, 0.7, 0.9, and 1,
respectively. Whenl51, the stationary probability distribu
tion P(x) @see Eq.~11!# will be divergent at the points
x5sin21AD1 /D212np (n50,61,62,63, . . .!, so when
D1,D2 we cannot determineJ from Eqs.~8! and~11!; now
we only plot the curve in the case ofD1.D2. Firstly, the
figure shows that the probability current is always negati
In addition, the figure also shows~a! in the curve a clear
peak value appears;~b! with the increase ofl, the probabil-
ity current becomes more and more distinct and the p
value moves towards the right and increases.

In Ref. @12#, the authors reported that the symmet
noises cannot induce the net voltage in Josephson juncti
namely, the symmetric noises cannot induce the probab
current. By the study of the above example we find that if
the system there is a correlation between additive and m
tiplicative noise, symmetric noise can produce the proba
ity current in Josephson junctions. Now the net voltage is
zero.

IV. THE MOTOR PROTEINS

For the motor proteins, Astumian and Bier proposed
model @6#, predictions of which are consistent with the e
perimental data obtained by Svobodaet al. @30# for a single
protein molecule moving along a biopolymer.

When a protein molecule with charge moves on a lin
highway with a periodic array of fixed charges~along a

FIG. 1. The negativeJ/2 ~J is the probability current! of super-
conducting junction vsD1 for different values ofl. D250.3,
v051, andl50.3, 0.7, 0.9, and 1.J, D1, D2, v0, andl are di-
mensionless.
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3920 57J. H. LI AND Z. Q. HUANG
biopolymer!, its dynamic equation for the position is give
by Newton’s law as

mẍ526phaẋ2
]

]x
U~x,t !, ~18!

wherem is the mass of a molecule,26phaẋ is a viscous
drag with h being the viscosity, anda the diameter of the
particle, assumed spherical,U(x,t) is a fluctuating potentia
barrier, which satisfies@6#

U~x,t !5U~x!1u~x,t !, ~19!

here the potential at anyx fluctuates symmetrically aroun
U(x) andu(x,t) can take the values1Du(x) and2Du(x)
@in Fig. 2 we plotU(x,t) in the case of dimensionless form#.
We see that the forceF52]U(x,t)/]x now fluctuates be-
tween F1

152(E1DE)/a and F1
252(E2DE)/a on the

interval ~0,a), and betweenF2
15(E1DE)/(12a) and

F1
25(E2DE)/(12a) on the interval (a,1!. The flipping

rate of the fluctuating potential barrier isg. Note that we
haveDu(0)5Du(1)50 andU(x,t)5U(x11,t). The fluc-
tuating potential barrier is brought about by the repea
binding of ATP and release of ADP.

If we consider the internal noise~thermal noise!, from Eq.
~18! we obtain

mẍ

6pha
52 ẋ2

1

6pha

]

]x
U~x,t !1

1

6pha
h~ t !, ~20!

where h(t) represents the Gaussian white noise with z
mean and correlation function̂h(t)h(t8)&52D1d(t2t8).
When we consider the external environmental perturbat
such as the external vibration, the change of the exte
temperature, the external electromagnetic field, and so
the viscosity should change. Now we approximately desc
this change via a stochastic parameter, 1/6pha1s8j(t)
@j(t) is a stochastic force, ands8 is a positive parameter#,
and only consider the case when the internal and exte
fluctuations are smaller. As for the case whenj(t) andh(t)
are moderate and larger, a detailed theory is under st
Then Eq.~20! becomes

mẍ

6pha
52 ẋ2

1

6pha

]

]x
U~x,t !2s8j~ t !

]

]x
U~x,t !

1
1

6pha
h~ t !, ~21!

in which we neglect the termh(t)j(t) and retain only the
linear noise one. We assume that the multiplicative no

FIG. 2. The fluctuating periodic potential barrier of the mot
proteins~in dimensionless form!.
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j(t) is Gaussian white noise with zero mean and correlat
function ^j(t)j(t8)&52D2d(t2t8). In addition, the change
of the viscosity induced by the environmental perturbat
should make the thermal movement of the biopolymers,
proteins, etc. vary, and the varying~it is a fluctuation! of the
thermal movement of the moleculae should affect the th
mal additive noise. Thus here additive and multiplicati
noise are not independent~there is correlation betwee
them!. We assume the correlation function betweenh(t) and
j(t) to be ^j(t)h(t8)&52lAD1D2d(t2t8) (0<l<1).

For simplicity, we consider the case of dimensionle
form. Making the variablesx,t,U(x,t), j(t), and h(t) be
dimensionless and setting 1/6pha5s851 andm5k (k is
dimensionless!, we have~in dimensionless form!

kẍ52 ẋ2
]

]x
U~x,t !2j~ t !

]

]x
U~x,t !1h~ t !. ~22!

Whenk!1, one can use the adiabatic approximationkẍ80.
Now Eq. ~22! can be simplified as

ẋ52
]

]x
U~x,t !2j~ t !

]

]x
U~x,t !1h~ t !. ~23!

When we neglect the effect ofj(t), Eq. ~23! becomes the
model studied in Ref.@6#.

For the model proposed by Astumian and Bier, wh
a51/2, namely, spatial symmetry, it stops transducing
ergy. To illustrate that the correlation between additive a
multiplicative noise can induce the transport, we only co
sider the case of spatial symmetry (a51/2). Going from the
Langevin equation~23! to the associated Fokker-Planc
equation@26,27,31# for the probability density distribution
we find

]

]t S Pi
1~x,t !

Pi
2~x,t !

D 5S Gi
1 g

g Gi
2D S Pi

1~x,t !

Pi
2~x,t !

D , ~24!

where Gi
152g2Fi

1]x1@D1(12l2)1D2(Fi
11lAD1/

D2)2] ]x
2 and Gi

252g2Fi
2]x1@D1(12l2)1D2(Fi

2

1lAD1/D2)2] ]x
2 . i 51 represents the system on the interv

~0,1/2! and i 52 represents the system on~1/2,1!. The quan-
tities P1(x,t) andP2(x,t) are the probabilities at any timet
to find the barrier at the1 or 2 configuration, respectively
and the particle at positionx.

WhenE@DE, we haveF1822E andF282E. Now we
can use the above formulas for Eq.~1!. The corresponding
Fokker-Planck equation is

] tPi~x,t !8L̂ i Pi~x,t !, ~25!

in which Pi(x,t)5Pi
1(x,t)1Pi

2(x,t), L̂ i52Fi]x1Bi]x
2 ,

and Bi5D1(12l2)1D2(Fi1lAD1 /D2)2. From Eqs.~8!,
~11!, and~25!, it is easy to obtain the probability current

J5N@12exp~2a!#, ~26!

whereN is the normalization constant for the correspondi
probability distribution, and
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a52
8E2lAD1D2

@D1~12l2!1D2~22E1lAD1 /D2!2#@D1~12l2!1D2~2E1lAD1 /D2!2#
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Equation~26! shows whenE@DE, ~a! as long as the corre
lation between additive and multiplicative noises is not ze
the transport of proteins exists;~b! the probability current has
nothing to do with the flipping rate of the fluctuating barri
~now the effect of the flipping rate of the fluctuating barri
on the transport is very small and can be neglected!. In Fig.
3 we representJ/2 versusl for D150.3, D250.15, and
E50.5. Since Eq.~23! has been made in the dimensionle
form, J, l, D1, D2, and E ~in Fig. 3! are dimensionless
From the figure we can find that with an increase ofl the
transport of the moleculae becomes more and more dist

If E;DE or E!DE, the formulas~8! and ~11! are not
applicable. But we can use the method in Ref.@6# to calcu-
late the probability currentJ. In Fig. 4~a! J/4 as a function of
l is plotted for D150.3, D250.15, E51, DE50.5, and
g53, 5, 10, and 50, respectively, in dimensionless form. F
ure 4~a! shows that wheng increases the flux become
smaller and smaller. This is because after a flip of the po
tial surface the probability distribution must take enou
time to adjust to the new potential, and the adjustment t
is larger than the average flipping time 1/g. Figure 4~a! also
shows that even ifl50, there is the flux for the protein
moleculae. This is because of the effect of the term2j(t)
3(]/]x)U(x,t) in Eq. ~23!. Whenl50, J/4 versusD2, the
external noise strength, is plotted in Fig. 4~b! with D150.3,
E51, DE50.5, andg55, in dimensionless form.

V. CONCLUSION AND DISCUSSION

In conclusion, we have revealed a kind of noise-induc
transport of particles. This transport is due to the correlat
between additive and multiplicative noise. When the noi
in Eq. ~1! are O-U~Ornstein-Uhlenbeck! noises, symmetric
dichotomous noises, or symmetric Poisson noises, so lon

FIG. 3. J/2 (J is the probability current! of the motor proteins vs
l in the case ofE@DE. D150.3,D250.15, andE50.5.J, l, D1,
D2, E, andDE are dimensionless.
,

ct.

-

n-

e

d
n
s

as

there is a correlation between additive and multiplicat
noise, there is the same phenomenon as reported in this
per. Now the correlation between additive and multiplicati
noise makes the probabilities of the fluctuations to the ri
and the left of the potential barrier different, so the transp
arises. This correlation breaks the spatial symmetry of
system. The energy in response to the transport originate
a part of the noise’s energy, which is determined by
correlation between additive and multiplicative noise. Fo
motor protein system, we find that in the presence of spa
symmetry, besides the correlation between additive and m
tiplicative noise, the multiplicative noise is also the origin
tion of the transport. Now the correlation between addit
and multiplicative noise and multiplicative noise can bo

FIG. 4. J/4 (J is the probability current! of the motor proteins vs
l for different g ~g53, 5, 10, and 50, respectively! with D250.15
~a!, andJ/4 (J is the probability current! of the motor proteins vs
D2 with l50 andg55 ~b!, in the case ofE;DE. D150.3,E51,
andDE50.5. J, l, g, D1, D2, E, andDE are dimensionless.
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break symmetry~spatial symmetry and noise symmetry!.
Finally, it must be stressed that the transport in the sup

conducting junction and the transport of motor prote
caused by the external environmental perturbation in this
per are only the mathematically and physically theoreti
results. And it remains yet to be verified by the experime
whether these transports exist, especially in the case of la
environmental perturbation.

APPENDIX

Equation~1! can be transformed into the following form
@26#:
v

et

s.

ev
r-
s
a-
l
s
er

ẋ5 f ~x!1@g~x!1lAD1 /D2#j~ t !1h8~ t !, ~A1!

where h8(t)5h(t)2lAD1 /D2j(t). The statistical proper-
ties of h8(t) are ^h8(t)&50, and ^h8(t)h8(t8)&
52D1(12l2)d(t2t8). Now the noisesj(t) andh8(t) are
no longer correlated.

From Eq.~A1! and the Novikov theorem@28# we can get

^g~x!j~ t !& f5D2„g~x!1lAD1 /D2…g8~x!. ~A2!
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