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Transport of particles caused by correlation between additive and multiplicative noise

J. H. Li**®and Z. Q. Huang
IDepartment of Physics, Nanjing University, Nanjing 210008, China
2Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875, China
3National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210008, China
(Received 7 November 1997

The transport of a spatially periodic system driven by additive and multiplicative Gaussian white noises
(between which there is a correlatjois investigated in the presence of spatial symmetry. The probability
current shows that the correlation between additive and multiplicative noise is an ingredient for the flux of
particles. Using the formulas obtained by us we investigate the transport in the superconducting junction and
the transport of motor proteins in the case of environmental perturbation. For the motor proteins we find that
the multiplicative noise can also induce the flux of the moleculae, even if the correlation between additive and
multiplicative noise is zero. The results of superconducting junction and motor proteins provide a theoretical
foundation for further study.S1063-651%98)07104-9

PACS numbefs): 05.40:+], 74.40:+k, 82.20.Mj, 87.15.Rn

I. INTRODUCTION Il. THE OVERDAMPED BROWNIAN PARTICLES

. . The equation of the overdamped Brownian particles for
Recently a considerable amount of analysis has been de- q P P

. o . 4 ) I%he system is
voted to investigating transport of particles in spatially peri-

odic stochastic systenjd]. The hopeful observation is that . dUq(x)
nonequilibrium fluctuations can lead to transport in spatially x=f(x)+9() &M+ (1), fX)=——5—,
periodic but asymmetric system2—8]. It has also been
shown that mean-zero noise of a more complicated asym- du

. - . 1(X)
metric type can lead to similar phenomena even in the ab- g(x)=— ax (1)

sence of a spatial asymmef{i§—13. It is clear that the spa-
tial asymmetry and the noise asymmetry are ingredients f%hereU
transport. In Refs[2,13,14, it is reported that the time cor-
relation of noise is also an ingredient for transport.

Now preliminary attempts have been made to apply thes
phenomena to the operation of biomolecular mof@4d5|,
as applications of new molecular separation technigiék

o(X) andU4(x) are spatially periodic functions with

a periodL. £(t) (the multiplicative noisgand #(t) (the ad-
ditive noisg represent the Gaussian white noises. In general,
fe express the influence of the internal fluctuation on the
system as additive noise and the effect of the external envi-

ronmental fluctuation on the system as multiplicative noise.
to condensed matter type systefg, 18, and to understand- Here we assume that the external environmental fluctuation

intg tfr|1e I:initics oftsirtlglle i?nhcrtlannd(Jjﬂiﬁ]. tPot?ntiafI ratch-t hcan influence the internal fluctuation. Because of the influ-
ets, uc lf{ﬁ Ing poten Iat ratchets, arr: ucbua Ing | orcet_ra (t: ence of the external environmental fluctuation on the internal
F286 2'8 21 i asimdnl(re] ne T:asteh ta&“? eben Investigate uctuation, additive and multiplicative noise are not inde-
tirﬁe,-pe,rio;jicarlocefternzm;grg: Cw?as r(l:\(/)enr;i d)e/zrz ;eirr?'rgeea;gpendent(there is correlation between theénThe statistical
[22,23. The transport in symmetric periodic potential sys- propertle’s cif ¢(1) and’ (1) are <§,(t)>_f:<7’(t)>f:,0’
(n(t)n(t'));=2D18(t—t"), (&(t)&(t))s=2D,8(t—t"),

tems driven by Poisson white noigehot white noisg or Ny N Y
asymmetric dichotomous noise has been demonstra’cead1d (e n(t .)>f_2)‘ D.D,5(t—1") [(0$7\§1)! {1 de-
notes averaging over the nojs&he Stratonovich interpreta-

[13,24,25. . . .
All of the above work has been focused on the transpor{Iorl of Eq. (1) yields the Fokker-Planck equatig6,27
of particles in the spatially asymmetric case or the noise P =—a,d(x,1), )

asymmetric case. In this paper we shall investigate the trans-

port in a spatially periodic symmetric system with symmetricyith the probability currend(x,t) given by

additive and multiplicative noise. The main point is that the

correlation between additive and multiplicative noise can J(Xx, 1) =A(X)P(x,t)— 0,B(X)P(x,1), (3)
cause net flow even in the absence of spatial asymmetry. The

setup for the problem is as follows: We first study a generalvhere A(x) =f(x)+D,g’(X)[g(X)+\+D;/D,], and B(x)
system consisting of overdamped Brownian particles whose=D,(1—\2)+ D,[g(x)+\\D;/D,]2. The prime indicates
differential equation is driven by Gaussian white noise, bederivative with respect ta of the functiong(x).

tween which there is a correlation. Then using the formulas |n the stationary state, far—, the distributionP(x,t)
obtained by us we try to investigate the transport in super-P(x) and the curreni(x,t)—J=const. Then we have
conducting(Josephsonjunction and the transport of motor

proteins with environmental perturbation. J=AX)P(x)—d,B(X)P(x). (4)
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However,J is not arbitrary, but is determined by normaliza-
tion and periodic boundary conditiondb{a=L) P(a)
=P(b), J(a)=J(b)=J. For convenience, defineb(x)

= [A[A(X")/B(x')]dx". Then dividing the sides of Eq4)

by e?™ and noting d,B(x)P(x)/e?® = ,B(x)P(x)/e?®

+ B(X)P(x)/e?™ 4, ¢(x), we obtain

J  AX)P(x)
b0 @b

B(x)P(x) B(X)P(x)
R )

IxP(X).

(5
Substitutingd, ¢(x) = A(x)/B(x) into Eq. (5), we have

X

J

. BXPX)
et

et(x)

(6)

Integrating Eq.(6) from a to b, we get
- B(a)P(a)exfd — ¢(a)]—B(b)P(b)exd — ¢(b)]
5 )

fa exd — ¢(x)]dx

()

It is clear thatP(a)=P(b), B(a)=B(b), and ¢(a)=0, so
Eq. (7) becomes

,_B@P@{1-exd - ()]}
fbexq— $(x)]dx

=N{1-exf - ¢(b)]},

®

where N=P(a)B(a)/fgdx exgd —¢(X)], which is the nor-
malization constant for the stationary probability distribution
[cf. Eq.(1D)].

From Eq.(8) we find that the solution for the nonzero
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We now turn to a more detailed analysis of E®).
Firstly, let us consider Eq1). In general, the random func-
tion #(t) describes internal thermal noidedditive, and
&(t) describes external “nonthermal” noigeultiplicative).
When g(x)=0 or ¢(t)=0 no transport can occurdJ&0).
Transport occurring withg(x)=0 or £(t)=0 means that
thermal fluctuations are converted into work and implies a
violation of the second law of thermodynamics. Equaii®n
shows that the condition for the transport of particles is
¢(b)+#0, i.e.,

fb(_x) =fb F(x)+ D0 ()[g(X) +AD1/D,]
a B(x) aD(1-A%)+D,[g(X)+AyD;/D,]?
9)
The formula(9) can be further simplified as
fb 0 +0. (10
aD(1-A)+D,[g(x)+AVD{/D,]2

In the presence of spatial symmetry, suitably selectiramnd

b we haveUy(a+b—x)=Uy(x) andU (a+b—x)=U(x)

[i.e.,, f(a+b—x)=—f(x) and g(at+tb—x)=—g(x)]. If
N=0, the left-hand side of Eq10) equals zero, which can
be easily obtained after usinf(a+b—x)=—-f(x) and
g(a+b—x)=—g(x), now Eq.(10) is false and the curreit
equals zero; in#0, Eq.(10) is true and the currenlt does

not equal zero. In the case of spatial asymmetry, even if
A=0, Eq.(10) is true and the currert does not equal zero.
Thus the correlation between additive and multiplicative
noise and the spatial asymmetry are ingredients for the flux
of particles in the spatially periodic system. It has been re-

current] has a definite sign. This is because of the symmetryPorted in many references that the spatial asymmetry can
breaking, which is induced by the correlation between thdnduce transport of particles in a spatially periodic system.
additive and multiplicative noises. It is necessary to giveHere our main point is that the correlation between additive

insight into the origin of this. Consider a solutist) (pro-
vided that it corresponds to the curreht of Eq. (1) for a
given realization of the noises. Thenx(t) is also a solution
of Eq. (1), with t replaced by—t. If »(t) and &(t) were
uncorrelated, the solutior x(t) would have the same prob-
ability asx(t); the corresponding current isJ (as a matter
of fact, now the currents= J are zerg. But when there is a

and multiplicative noise can cause net flow even in the ab-
sence of spatial asymmetry. In addition, it is clear that when
the overdamped Brownian particle is subject to an external
constant force, the spatial symmetry will be broken and the
particle can exhibit a nonzero net drift speed. If the external
force is related to timé, as long as symmetr{spatial sym-

metry or noise symmetjyis broken the particle will also

correlation, the probability does not have this symmetry; thenave a nonzero net speed.
current is also so. In a sense then the phenomenon reported The stationary solution of Eq2) is
here is due to symmetry breaking, which is induced by the

correlation between additive and multiplicative noise. In ad-

dition, from Eq.(8) we can still find that wherp(b)>0, J is
positive; while wheng(b)<0, J is negative. Thus the con-
dition under whichJ changes sign is that the value ¢{t)
can vary from positive to negativer from negative to posi-
tive).

It needs to be explained that the zero-current general s
lution of Eq. (4) is not admissible to the system. Indeed,
J=0 and its corresponding solution of Ed4) Pgy(x)

o 1/B(x) expl S TAX)/B(x')]dx'} satisfy the conditions of the

exf ¢(x)]

TB(x) fﬁ exd — ¢(x") — ¢(b) O(x—x")]dx’,

(11)

P(x)=N

where (x—x") is the Heaviside step function, and the nor-

dpalization constantN= P(a)B(a)/fgdx exgd—o(X)]. The

average velocity

(=X H= T TGOV EM) - (12)

periodicity, the periodic boundary condition, and so on. But

if J=0, from Eq.(6) we can gee?®® =1 i.e.,¢(b)=0, and

According to the Novikov theorer28], we have(see Ap-

#(b)=0 is not a general condition of the system studied byPendix

us. Thus the zero-current general solution of E.is not
admissible.

(9()&(1)s=D,[g(x) +AVD1/Dolg’ (x).  (13)
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From Eqs(12) and(13) we can obtain the stationary average 01 r
velocity 3
0.09 ] —2=0.3
. 1t 0.08 |- - A=0.7
69, [ (x0um)idr= § AGIP)dx g A=0.9
006 ] P B A=1
=J{1-exd -~ $(b)]} M, 19 & | SN
S 005}
where M =¢dxdx [ A(X)/B(x)]exp d(X)— ¢(x") 004 E
— ¢(b) 8(x—x")]. Below we shall investigate the motion of 0.03 i
electron pairs in a superconducting junction and the motion B
of motor proteins along a biopolymer in a the case of envi- 002/
ronmental perturbation. 0.01
ok

Ill. THE JOSEPHSON JUNCTION

For the superconducting junction, the electric current 1
across the junction is given hl,=J, sin ¢, whereg is the
phase dlffe_renc_e of thelsuper.cpnductlng_ order paramet%%nducting junction vsD, for different values of\. D,=0.3,
across the junction andt_, is a cr|t!cal eIec_trlc current. The_ wo=1, andA=0.3, 0.7, 0.9, and 1], Dy, Dy, @y, and\ are di-
evolution of the phase difference is described by the equatiop,ensionless.

[29]

FIG. 1. The negativd/2 (J is the probability currentof super-

A of the moleculae should affect the thermal additive noise.
——p+Jo sin p=1(1), (15  Thus here the additive and multiplicative noises are not in-
2eR dependent, and there is correlation between them. Here we
wherel (t) is a driving electric current, and is a resistance. assume that the corr*elatlon func/t|on betwgg(t) and 7o(t)
In the case of the environmental perturbation, such as th5<”0(t)§0(t)>:2)‘ DlD.25(t_t.) (Og.)‘gl)' For conve-
external vibration, the change of the external temperatur ience, we make Eq17) in the dimensionless form and set

. . [2e=Jy=0=R=1.
the perturbation of the external electromagnetic field, and s 0 . . .
on, the internal structure of the Josephson junction should In Fig. 1 we plot the_ _negatl_vé/2 (J is the pro_bablhty
change. In general, the change is very small. But when th§UITen! versus the additive noise strendih for different
environmental perturbation becomes larger and larger, thjlues ofk. Since we have made E@L7) in dimensionless
change will become clearer and clearer. The change of th™M: J, D1, D2, @o, andA (in Fig. 1) are dimensionless.
internal structure of the Josephson junction should vary th&l€re we seD;=0.3, wo=1, andA=0.3, 0.7, 0.9, and 1,
critical electric current. Now we describe it via a stochasticr€SPectively. When =1, the stationary probability distribu-
parameter,),+ o&o(t), in which &(t) is a stochastic force, 10N .Pff) [see Eq.(11)] will be divergent at the points
o is a positive parameter. The driving electric currentX=SiN "VD1/Dp+2n7 (n=0,+1,+2,%3,...), so when
1(t)= 7o(t) is taken as a Gaussian white noise. Then EqP1<D2 we cannot determiné from Egs.(8) and(11); now
(15) becomes we only plot the curve in the case &f;>D,. Firstly, the
figure shows that the probability current is always negative.
ho. . In addition, the figure also show®) in the curve a clear
2er? T ot aéo(t)]sin ¢=7o(1), (16)  peak value appearth) with the increase ok, the probabil-
ity current becomes more and more distinct and the peak
where we approximately sép(t) as a Gaussian white noise. value moves towards the right and increases.
The statistical properties ofé&y(t) and 7o(t) are In Ref. [12], the authors reported that the symmetric
(&)1 =(no(1))s=0, (7o(t) po(t'))s=2D,8(t—t"), and noises cannot inducel the net voltage ir) Josephson junctip_ns,
(&o(1)Eo(t'))=2D,8(t—t'). mo(t) is the internal thermal Namely, the symmetric noises cannot induce the probability
additive noise, and:o(t) the external multiplicative noise. current. By the study of the above example we find that if in

Equation(16) can be simplified as the system there is a correlation between additive and mul-
tiplicative noise, symmetric noise can produce the probabil-
b= —wy sin ¢— &(t)sin ¢+ (1), (17) ity currentin Josephson junctions. Now the net voltage is not

zero.

in  which wg=2eR}/h, &(t)=(2ecR/A)é&y(t), and
(1) = (2eRh) 7o(1). . . . IV. THE MOTOR PROTEINS

From the above analysis for the origin of the multiplica-
tive noise, we find that here the multiplicative noise repre- For the motor proteins, Astumian and Bier proposed a
sents the external environmental perturbation. In additiongnodel [6], predictions of which are consistent with the ex-
the change of the internal structure of the Josephson jungerimental data obtained by Svoboefgaal. [30] for a single
tion, which is caused by the environmental perturbationprotein molecule moving along a biopolymer.
makes the thermal vibration of the moleculae in the junction When a protein molecule with charge moves on a linear
vary. The varyindit is a fluctuation of the thermal vibration highway with a periodic array of fixed charg€along a
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&(t) is Gaussian white noise with zero mean and correlation
function (£(t)&(t'))=2D,48(t—t’). In addition, the change

of the viscosity induced by the environmental perturbation
should make the thermal movement of the biopolymers, the
proteins, etc. vary, and the varyiiig is a fluctuation of the
thermal movement of the moleculae should affect the ther-
mal additive noise. Thus here additive and multiplicative
noise are not independerithere is correlation between
them). We assume the correlation function betweg) and

£(t) to be(&(t) p(t'))y=2AyD,D,8(t—t") (0<A<1).

For simplicity, we consider the case of dimensionless
form. Making the variablex,t,U(x,t), &(t), and n(t) be
dimensionless and setting F@Ha=0c'=1 andm=k (k is
dimensionless we have(in dimensionless form

FIG. 2. The fluctuating periodic potential barrier of the motor
proteins(in dimensionless form

biopolymey, its dynamic equation for the position is given
by Newton’s law as

. . J
mx=—67-r77ax—(9—XU(x,t), (18

. .0 Jd
. kx=—x——U(x,t) = &(t) = U(x,t) + n(t). 22
wherem is the mass of a molecule; 6 nax is a viscous X=X ox Ot =& )ax 68+ () (22

drag with » being the viscosity, and the diameter of the
particle, assumed sphericél(x,t) is a fluctuating potential Whenk<1, one can use the adiabatic approximatiow=0.
barrier, which satisfieg5] Now Eq.(22) can be simplified as

U(x,t)=U(x)+u(x,t), (29 _ 9 P
here the potential at any fluctuates symmetrically around AR @3
U(x) andu(x,t) can take the values Au(x) and —Au(x)
[in Fig. 2 we plotU(x,t) in the case of dimensionless form When we neglect the effect af(t), Eq. (23) becomes the
We see that the forcE = — dU(x,t)/dx now fluctuates be- Model studied in Ref.6]. _ _
tween F; = —(E+AE)/a and F; = —(E—AE)/a on the For the model proposed by Astumian and Bier, when
interval (0,¢), and betweenF; =(E+AE)/(1—a) and a=1/2, n_amely, spatial symmetry, it stops transdu.cllng en-
F; =(E—AE)/(1—a) on the interval &,1). The flipping ergy. To |I_Iustrat_e that th_e correlation between additive and
rate of the fluctuating potential barrier ig Note that we multlpllcatlve noise can induce the transport_, we only con-
have Au(0)=Au(1)=0 andU(x,t)=U(x+ 11). The fluc- sider the case of spatial symmetry =€ 1/2). Going from the

; . A angevin equation(23) to the associated Fokker-Planck
tuating potential barrier is brought about by the repeateé’ : Y LT
binding of ATP and release of ADP. equation[26,27,3] for the probability density distribution

If we consider the internal noigéhermal noisg from Eq. we find
(18) we obtain g [P (x,) B Gty \[P(xt) o
mx .1 D Uitrs oo a\Pr(x0) \ vy G J\Pr(xb))
6mrmpa X 6mma dx 0 67 na 7V, (20

where G =—y—F9,+[D1(1-\)+D,(F; +\\D4/
where 7(t) represents the Gaussian white noise with zerqy,)2152  and G; =—y—F; dy+[D;(1—\?)+Dy(F;
mean and correlation functiofw(t) 7(t'))=2D.56(t—t'). )\ /D,/D,)?] #2.i=1 represents the system on the interval
When we consider the external environmental perturbatlon(,o 1/2 andi =2 represents the system 6b2,1). The quan-

such as the external vibration, the char)ge. of the eXtemq,tiesP*(x,t) andP~(x,t) are the probabilities at any tinte
temp_eratu.re, the external electromagnetic f|eld, and so o find the barrier at the- or — configuration, respectively,
the viscosity should change. Now we approximately describe, 4 e particle at position

this change via a stochastic parameter,7bf@+ o' £(t) WhenEs AE, we haveF,= — 2E andF ,=2E. Now we

[£(t) is a stochastic force, and’ is & positive parametgr .5 se the above formulas for E@). The corresponding
and only consider the case when the internal and EXtem‘?—Iokker-Planck equation is

fluctuations are smaller. As for the case whgh) and #(t)

are moderate and larger, a detailed theory is under study. L
Then Eq.(20) becomes P D=LiPi(x.1), (25)

mx in which P;(x,t)=P;" (x,t) + P, (x,t), Lj=—F;d,+B;d2,

J
6rma_ < Grra Y=o &) ——U(X.) and B;= Dl(l—_)§2)+ Dz(Fi+)\\/.D1/D2)2. From Eqgs.(8),
(11), and(25), it is easy to obtain the probability current
+ smra 7(t), (21) J=N[1—exp—a)], (26)

in which we neglect the termy(t) £(t) and retain only the whereN is the normalization constant for the corresponding
linear noise one. We assume that the multiplicative noisgrobability distribution, and
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~ 8E2\ /DD,
[D1(1-A%)+Dy(—2E+A\VD;/D,)?][D1(1—-N?)+Dy(2E+N\yD;/D,)?]

Equation(26) shows wherE> AE, (a) as long as the corre- there is a correlation between additive and multiplicative
lation between additive and multiplicative noises is not zeronoise, there is the same phenomenon as reported in this pa-
the transport of proteins existidy) the probability current has per. Now the correlation between additive and multiplicative
nothing to do with the flipping rate of the fluctuating barrier noise makes the probabilities of the fluctuations to the right
(now the effect of the flipping rate of the fluctuating barrier and the left of the potential barrier different, so the transport
on the transport is very small and can be neglectedFig.  arises. This correlation breaks the spatial symmetry of the
3 we representl/2 versus\ for D;=0.3, D,=0.15, and system. The energy in response to the transport originates in
E=0.5. Since Eq(23) has been made in the dimensionlessa part of the noise’s energy, which is determined by the
form, J, A, D4, D,, andE (in Fig. 3 are dimensionless. correlation between additive and multiplicative noise. For a
From the figure we can find that with an increasenofhe ~ motor protein system, we find that in the presence of spatial
transport of the moleculae becomes more and more distincsymmetry, besides the correlation between additive and mul-

If E~AE or E<AE, the formulas(8) and (11) are not tiplicative noise, the multiplicative noise is also the origina-
applicable. But we can use the method in Réf.to calcu- tion of the transport. Now the correlation between additive
late the probability current. In Fig. 4a) J/4 as a function of and multiplicative noise and multiplicative noise can both
\ is plotted forD,=0.3, D,=0.15, E=1, AE=0.5, and

y=3, 5, 10, and 50, respectively, in dimensionless form. Fig- OF

ure 4a) shows that wheny increases the flux becomes 002 |

smaller and smaller. This is because after a flip of the poten- 004 |

tial surface the probability distribution must take enough Tk

time to adjust to the new potential, and the adjustment time 008 |

is larger than the average flipping timeylfFigure 4a) also 008 |

shows that even ik =0, there is the flux for the protein = 0.1 i

moleculae. This is because of the effect of the terr#(t) - k

X (alax)U(x,t) in Eq. (23). When\ =0, J/4 versusD,, the 012t

external noise strength, is plotted in Figh#with D;=0.3, 014 F e Y =9

E=1, AE=0.5, andy=5, in dimensionless form. 018k . .1=10
o8EF@ |- =50

V. CONCLUSION AND DISCUSSION 02 bt

In conclusion, we have revealed a kind of noise-induced 0 01 02 03 04 05 06 07 08 08 1

transport of particles. This transport is due to the correlation A
between additive and multiplicative noise. When the noises
in Eq. (1) are O-U(Ornstein-Uhlenbecgknoises, symmetric

dichotomous noises, or symmetric Poisson noises, so longas 005 f
OF-----------n -
0¢ [ el

! 0.05 F
005 |- [ \\\

: o1 F AN
01 [ F .

] S o5} .
015 | ° ! |

i 02 'y

S o2f : \

: 025 Y
025 | [ \

s 03| ® |
03 [

E _0.35 o - 1 1 1
035 | 0 0.05 0.1 015 0.2 0.25
_04 L L ] 1 ] 1 1 i L [l D2

0 01 02 03 04 05 06 07 08 09 1

N FIG. 4. /4 (J is the probability currentof the motor proteins vs

\ for differenty (y=3, 5, 10, and 50, respectivelwith D,=0.15
FIG. 3.J/2 (J is the probability currentof the motor proteinsvs  (a), andJ/4 (J is the probability currentof the motor proteins vs
\ in the case oE>AE. D,=0.3,D,=0.15, andE=0.5.J, \, Dy, D, with A\=0 andy=5 (b), in the case o0E~AE. D;=0.3,E=1,
D,, E, andAE are dimensionless. andAE=0.5.J, \, y, D4, D,, E, andAE are dimensionless.
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break symmetryspatial symmetry and noise symmetry =) +Ta0) + N VD~ID1E(1) + »' (t Al
Finally, it must be stressed that the transport in the super- (x)+g(x) 1/D2JE(0+7'(1), D)

conducting junction and the transport of motor proteins

caused by the external environmental perturbation in this pa- ey BN - -

per are only the mathematically and physically theoreticai’vhere 7' (1) = n(t) ~AyD1/D2¢(). The statistical proper-

results. And it remains yet to be verified by the experimentéi_es of 77,2(0 ar,e <77,(t)>:0’. and <”/(t),77/(tl)>
whether these transports exist, especially in the case of largér2P1(1~A9) 8(t—t’). Now the noiseg(t) and '(t) are

environmental perturbation. no longer correlated. .
From Eq.(Al) and the Novikov theorerf28] we can get

APPENDIX

Equation(1) can be transformed into the following form
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